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Scaling of Fluctuations and Critical Exponents 
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We present a new technique to describe the abnormal behavior of certain fluc- 
tuation observables in the critical regime of quantum statistical systems which 
undergo a phase transition. The idea is to rescale the local fluctuation operators 
by a relevant external parameter of the system, in addition to the usual scaling 
with the inverse square root of the volume. The scaling indices used in this scal- 
ing procedure are directly related to the critical exponents. Furthermore, it is 
explained that this new method of scaling preserves the CCR structure of the 
algebra of macroscopic fluctuations. Finally, scaling indices are computed for 
the relevant microscopic observables at all temperatures in a mean field 
approximation for a quantum anharmonic crystal. These indices yield the same 
critical exponents as predicted by mean field theory. 

KEY WORDS: Abnormal fluctuation observables, CCR algebras, critical 
exponents. 

1. INTRODUCTION 

The  t h e o r y  o f  n o r m a l l y  scaled f luc tua t ions  and  its c o n n e c t i o n  wi th  repre-  

sensa t ions  o f  C C R  a lgebras  are  by n o w  well  unde r s tood .  ~-4~ A b n o r m a l l y  

scaled f luc tuat ions ,  a p p e a r i n g  in sys tems wi th  l ong - r ange  cor re la t ions ,  a lso 
p r o v e d  to be in te res t ing  since m a t h e m a t i c a l  s t ruc tures  o the r  t han  C C R  

arise w h e n  the  f luc tua t ions  need  a n o m a l o u s  scaling, tS~ 

W e  present  an  a l t e rna t ive  m e t h o d  to descr ibe  the a b n o r m a l  b e h a v i o r  

of  f luc tua t ion  obse rvab les  o f  s o m e  equ i l i b r i um sys tem at  cri t icali ty.  The  

idea  is to scale the local  normal  f luc tua t ions  o f  an  obse rvab le  A addi-  

t iona l ly  wi th  a t 'e levant  ex te rna l  p a r a m e t e r  such as ( T - 7 " , . )  ~A, where  T is 

~Instituut voor Theoretische Fysica, K.U. Leuven, B 3001 Leuven, Belgium. E-mail: 
Marino.Broidioi@ fys.kuleuven.ac.be; Michael.VanCanneyt @ fys.kuleuven.ac.be. 

2 I.I.K.W Onderzoeker Belgium. 

115 

0022-4715/96/0100-0115509.50/0 �9 1996 Plenum Publishing Corporation 



116 Broidioi and Van Canneyt 

the temperature of the system. One can then determine the appropriate 
scaling index JA such that the limiting distribution 

lim lim (exp[it(T--TJ~FN(A)])r.....N 
T ~  T c +  N ~  c~ 

where FN(A) is the normally scaled fluctuation of A, is a smooth, nontrivial 
function in t. The same procedure can be repeated for other external 
parameters. Note that the order of taking the limits is important and that 
there is no coupling at all of the external parameters to the infinite-volume 
limit. 

The scaling indices obtained this way are directly related to the critical 
exponents as they are standardly defined in physics. Another important 
aspect of this method is that the limiting distributions determine operators 
on some Hilbert space which can be identified with the macroscopic fluc- 
tuation observables and which generate again a CCR algebra induced by 
a quasi-free state, as in the normal case. 

In Section 2 we briefly review the theory of normal, supernormal, and 
subnormal fluctuations, as developed in ref. 2, 6, 8, and 7. Section 3 intro- 
duces the anharmonic crystal, which is used in Section 4 to explain the 
alternative way of scaling the fluctuations. Section 5 is meant as an illustra- 
tion and contains a detailed analysis of the fluctuations of Q and P in the 
case of the quantum anharmonic crystal. An important feature of the 
illustration is the relation between the scaling indices and the critical 
exponents of the model. 

2. N O R M A L  A N D  A B N O R M A L  F L U C T U A T I O N S  

Consider a quantum lattice system (~,  ( - ) ) ,  where ~ is a quasi-local 
C*-algebra of microscopic observables and ( . )  is a state on ~.  The 
algebra ~ is defined as follows: let d be a C*-algebra and denote by 
~r x e Z d, a copy of sO. Then define for all finite A c 7/d the minimal 
tensor product d A =  | which is also a C*-algebra. Finally, 
M='UA ~r Typical examples are spin systems, where ~r is a matrix 
algebra, or the harmonic crystal, where d is generated by the momentum 
and position operators P, Q. The state ( - )  on ~ is assumed to be transla- 
tion invariant and ergodic. 

Define the normal local fluctuation observable FN(A) of an observable 
A ~ ~ in the state ( . )  as 

FN(A)=]AN] -1/2 ~ vx(A--(A)) 
) r  
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where rx is the translation automorphism in ~ over the vector x and 
Ate= [ -N ,N]  a, a d-dimensional cube in Z a. The main achievement of 
Goderis et al. was to give a mathematical meaning to the limits N---, ~ of 
the Fte(A). They proved the following. Let ~o be a subspace of ~.  If 
VA =A* e~o  

0 <  lim (Fte(A)Z)<oo (1) 
N ~  

lim (e i'rN~m) = e -(t2/2)limN-~ (2) 
N ~ o o  

then the system (~, .~o, ( " ) )  is said to have normal fluctuations for ~ 0 -  I n  

this case, the limits (2) define a quasi free state on and yield a regular 
representation of a CCR C*-algebra. 19) This CCR algebra is called the 
algebra of normal fluctuations. The regularity of the representation implies 
the existence of Boson field operators satisfying the commutation relations 

[F(A), F(B)] = lim ([Fu(A),  FN(B)]) 
N ~ o o  

Goderis et aL also derived general cluster conditions under which the 
system (~,  ~o, ( ' ) )  has normal fluctuations. For the precise statement 
and for further details, we refer to refs. 2 and 3. 

For some systems however, this theory is not applicable. This is the 
case if the fluctuation variance (1) vanishes or diverges. Typical situations 
are thermodynamic systems at a phase transition and examples have 
already been studied: e.g., the anharmonic crystal or the Curie-Weiss 
model. ~~ It is a well-known fact that at criticality susceptibilities may 
diverge. These susceptibilities correspond to the variance of some 
microscopic observable, e.g., the microscopic observable corresponding to 
the order parameter. The divergence of the fluctuation variance is caused 
by the long-range correlations of this microscopic observable in the state. 

In the physics literature ~'~ the long-range order is described by a 
critical exponent, indicating the decay at large distances of the correlation 
function: 

(Ar.,.A) (A)'- 0 ( ~ )  - ~ a s  x ~  oo  

To avoid the divergence of the variance, abnormal scaling was introduced: 
instead of scaling normally (i.e., lAir/2), one defines a scaling index 
6A e (0, 1/2) such that the abnormally scaled fluctuations 

1 

F%A(A)-IAteI~/2+a A ~ vx (A- (A) )  
XEAN 
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have a nontrivial distribution in the limit N ~ oo. Remark that the limiting 
distribution 

lim < e x p ( i t F ~ ( A ) ) > = ~ A ( t )  
N ~ o 5  

is, in general, no longer Gaussian. 
In situations where l imN_~ <exp[ i tFN(B)]>  = 1, one uses the same 

technique of rescaling the local fluctuation abnormally, but with a scaling 
index 5B < 0 in this case. 

Since the scaling index depends on the observable, the existence of a 
CCR algebra is no longer guaranteed; however, recent developments 
indicate that interesting structures appear also in this case. t5~ 

3. THE A N H A R M O N I C  C R Y S T A L  

The model describing anharmonic crystals, discussed in ref. 6, will be 
used throughout as a guideline to present the new approach to studying 
the abnormal behavior of fluctuations. Since a detailed analysis of this 
model can be found in refs. 6 and 12, we will be brief in explaining the 
model and its features. The model is defined on a lattice, with a quantum 
mechanical particle associated to each lattice site. The observables of such 
a system can be described by an algebra M =  (~);~za~-, where each ~ is 
a copy of the C*-algebra ~r associated to the Heisenberg group, ~;31 with 
generators 4, P, Q such that [P,  Q] = i~. 

The local Hamiltonians of the model are specified by the operators 

where 

1 , a , 1 

rN=  Z PT +5 Z Qz ,:,ZA N 
/ E ,'IN I E AN 

h ~, Qt (3) 
/ ~  AN 

q~/.r(Q/-- Q~)2 

and A N = { I e Z a : I I~ [ <~ N/2; a = 1 ..... d } ; V -  [A N I is the cardinality of A w. 
The local Gibbs states of the model describe the system in equilibrium 

at inverse temperature fl and are given by 

where A r e~. 

Tr(e-PnN~hlA) 
(A >p,h,N-- Tr(e_pnN) 
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This model is soluble in the sense that for all temperatures, the free 
energy density can be calculated, namely 

f (T 'h)=u] im ~ ta l - -~  y'. ln[2sinh P2t2q (c',av) 
L P  IZXNI q~.~ 

i h 2 } 
2 ZJ(Ch, N) q- W(Ch'N) -- Ch'N Wt(Ch'N) 

where "~N denotes the reciprocal volume 

/~N = q I q , = ~ n ~ ;  117=1~<~- 

and where C~,,N is the solution of the self-consistency equation 

Ch'N=r  \I~AN /fl, h, N 

h 2 1 2 
=Z~(Ch, N)2"Ji--V E 2~dq(Ch, u) q~ Yf 

and 2 = h/m 1/2, 

coth[#g-2q(Ch.N) 1 

g2q(C) 2 = co(q) z + A(c) 

A ( c ) = a +  W'(c) 

co(q) z = q~(0) - ~(q) 

(4) 

Taking first the limit N ~ m and subsequently the limit h --, 0+ shows 
that the model has a phase transition. The transition is described by the 
order parameter (Qo)p:  there exists a critical line (tic, 2,.) (see Fig. 1) such 
that 

if fl<~fl,.(2): ( O o ) p = O  
if fl>fl,.(2): (Qo)/J.+_ = - k [ P ( f l , ) , ) ]  '/2 

where 
h 2 

p(fl, 2) = lim lim A( )2 h~O N~o'~ Ch. N 

is the first term appearing in the self-consistency equation of the infinite- 
volume state: 

h 2 
Ch=A(Ch)2 + (,(C h, T, 2) 
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x,,(o) 

Fig. 1. 

pCr, x)>0 

Phase diagram of the model, c6~ 

T 

The integral 

2 C coth[(fl2/2) ~?q(Ch)] 
I~.(Ch, T, A)='-z'-ZT"~ludd Js~ 2~"2q(Ch) 

where ~ u =  {q e R e : Iq~ [ < ~; e = 1 ..... d} is the first Brillouin zone. Remark 
that the fact that h ~ 0 allows us to take this limit. 

4. SCALING WITH EXTERNAL PARAMETERS 

In refs. 6 and 7 it was observed that the fluctuations of the microscopic 
displacement observable and its canonical conjugate, the momentum 
observable, show abnormal behavior on the critical line. In the present sec- 
tion we will describe the new approach to studying the abnormal behavior 
of these observables. 

The abnormal behavior of the susceptibility XQ as a function of the 
external field can be discussed by studying the following limiting distribu- 
tions: 

lim lim lim (exp[isF~(Q)])p.h, N2 (5) 
h - - 0 •  Nl~OV N2~r~ 
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where 

haq 
F~(Q) - IAzvt ] ~/2 ~ ( a i -  (ai)p.h, N~) (6) 

l E A N  I 

is the familiar fiormally scaled local fluctuation of the observable Q in a 
volume A N multiplied with an extra scaling factor, which is some power of 
the external field strength. The problem is to determine the appropriate Je ,  
such that the limiting distribution (5) is a smooth function of s. 

Coupling the limits N~ = N_, --* oo is possible and does not change the 
results in a qualitative way. 

The limit (5) is easily verified to be 

lim lim lim (exp[isF~(Q)])p.h.N,. 
h ~ O ~  NI~O'~ N2~o~ 

S 2 

= lira exp h2aeZQ(h) 
h ~ O +  - - 2 -  

where 

zQ(h) = lim lim o ( (F N,(O))-) p, hm2 
N l  ~ oo N 2  ~ o~ 

Rescaling the fluctuations in this way has two immediate consequen- 
ces. First, the limiting characteristic functions of the fluctuations of any 
observable A will be Gaussian, provided that an appropriate scaling 
index 6A is used such that limh_0+ zA(h) is a nonzero, finite positive real 
number. 

Second this procedure will preserve the CCR structure of the fluctua- 
tions. This follows from the observation that 

haA + as 
a~ F ~ ( B ) ]  - ~ [A,., By] [FN'(A)' [AN.[ .,-.>,~A~, 

The infinite-volume limit N~ ~ oo of this commutator is, by ergodicity of 
the states ( . )p ,h~o,  a c-number: 

[ FaA(A)' Fa'(B) ] =ha~+aa (.,. ~z~ [ A, ~,., B] ) p.,, (7) 

This is the Law of Large Numbers, which lies at the basis of the CCR 
structure of normal fluctuations. 

The limit h ~ 0 of this commutator can only give a finite number, dif- 
ferent from zero in the situation 6A + ~n <~ O. For 6a + ~s > 0, it is trivial 
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that the limit will be zero. The Cauchy-Schwarz inequality implies the 
finiteness of the limit 

h~A + ~e 
lim Z [A,., B,,] 

N, ~ ~ IAul I 
X, y ~ A N  1 

in a situation where 6,, + 6n < O: 

J( [ F ~ ( A  ), F~t~(B) ] )p.h [ 2 ~< 4((F~r t~.,, ( (Fau~(B))~-)p.,, 

Since 6 n and 3n are defined such that the variances on the r.h.s, are finite, 
the finiteness of the limit is established. The final conclusion is that under 
all circumstances the CCR structure of the limiting fluctuation observables 
is preserved. 

Although the new technique of rescaling fluctuations was presented by 
means of an external field, it is clear that one can also work with other 
external variables, such as IT-T , . I  or IP-P, .I  in fluid systems, where p 
denotes the density. Doing so, one can obtain information on the critical 
exponents of the model one wishes to study, which is interesting from the 
physical point of view. Simultaneously, this technique is also interesting 
from the mathematical point of view, since the limiting fluctuation observ- 
ables will always be characterizable as the Bose field operators of a macro- 
scopic CCR algebra on a (possibly degenerate) symplectic space, with a 
macroscopic quasi-free state defined on it. 

A last point is that one can use the same technique to study the 
asymptotic behavior of the Fourier transform of the susceptibility 2A(q). To 
that end, one defines the q-mode fluctuation 

1 
Flct,q (A)=  IA N, I I/2 

X E A N  I 

and scales it with a factor Iql ", i.e., 

e~qx(A.,.--(A.,.)p,h=O, U2) 

Fur , (A)= [ql* 
., iA,v, i ,/'-~_ X ~ ANI  

eiqx( A x-- ( A,. ) #,h=O.N,_) 

The scaling index e is directly related to the critical exponent which 
governs the correlation function: I ~ 

~ = 2 ( 1 - e )  
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5. APPL ICAT ION:  M E A N - F I E L D  CRIT ICAL E X P O N E N T S  IN THE 
A N H A R M O N I C  C R Y S T A L  

We discuss the fluctuation behavior of the single-site observables Q 
and P in the equilibrium states of the anharmonic crystal, using the follow- 
ing additional scaling factors: 

1. Vanishing external field: h---, 0. 

2. Vanishing temperature difference ( T-- T,.) --, 0 +. 
3. The momentum of the fluctuations q---, 0. 

The results illustrate the ideas introduced in the previous section. 
Moreover, Q defines the order parameter of the model and consequently 
the scaling indices of Q should correspond to the critical exponents of a 
mean field model. This is shown to be the case. 

The resulting CCR algebras of macroscopic fluctuation observables 
will be commutative for all critical temperatures T,. r 0 with a quasi-free 
state defined on it. Only for Tc = 0, is the algebra non-Abelian. 

As explained above, it is sufficient to calculate the variances of the 
macroscopic fluctuations in order to characterize the quasi-free state on the 
CCR algebra of macroscopic fluctuations. Therefore, we calculate 

lim lim ((Fjv,(Q))-)  p,,,,N2 
N I  ~ c r  N 2  ~ o~  

= h 2'~)" I/2} 
[ zl( c,,) j ,/2 c~ { ~ - [ zl( c ',) ] 

lim lim ( (F~,(P))2)t~,h,m 
N l ~ o r  N 2 ~ o ~  

(8) 

- 2 coth [Zl(Ch)] 1/2 (9) 

lim lim ((F~(Q))'-)p.h.m 
g I ~ 0 9  N 2  ~ c~  

I T -  T,.I*-= ~ coth {~-[A(ch)J 1/2} [a(c,,)] '/2 

lim lim ((F~,(P))'-)p.h.N: 
N I  ~ at .  N 2  ~ o~  

(10) 

I T -  T~ 12=' 2m[A(Ch)] i/2 
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lim lira (Fq, N,(Q)* Fqjc,(Q))p.h=O.N,. 
N I  ~ co N 2  ~ co 

l Oq(A(ch)) 

lim lim "' ( F q, N,( P )  ) B,h=O, N2 
NI ~ oo N2 ~ ct~ 

- [ql2e' )'mg2q(d(ch))c~ [ fl~2 Oq(ZJ(*)) (13) 

The results for these scaling indices are contained in the following 
theorems. 

T h e o r e m  1. 

(a) If T >  Tc(2c), then ~ ' = ~ = 0 .  

(b) If T <  Tc(2~), then 6' = 0  and ~ =  1/2. 

(c) If T =  T~(2~), then 6' = 0 and 

f !  if d = 3  
fi= + 0  if d = 4  

if d>~5 

Proof. The normality of the momentum fluctuations is immediate 
upon observing that for small h 

h2O'm 
lim ((FN(P))-)Iy, h,N ~ 2fl 

N ~ C O  

For the position fluctuation, we need to consider the three cases separately: 

(a) Since A(Ch)>0 i f h ~ 0 ,  this is trivial. 

(b) In this case t6~ zl(ch)~ h, such that our statement follows. 

(c) Here the behavior of zJ(Ch) as a function of h has to be studied. 
This is done in exactly the same way as in ref. 6: We consider the behavior 
of the self-consistency equation (4) as h tends to zero. Therefore, rewrite (4) 
a s  

h 2 
Ch -- C, = A(Ch) + I.,(Ch, To, 2c) --/,.(c,, To, )'c) 
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Using the fact that d (ch)=  (ch--c , )2W"(c,)+o(ch--c , )  and 

L(ch, To, 2c ) - -L (c , ,  T<, 2<)= A(ch) ( dd q , , 1 
fl<(2x) a Jlql <, s-q-(A(ch) + s2q 2) 

+ (ch - c,) O<I~['>(c~,) 
where 

w e  get 

d ql > ~ ~ coth w(q) 

A(Ch) h 2 A(Ch) 
2 W " ( c , ) -  ~-~h) -r 2W"(c,  O~I~a>')(c$') 

A(Ch) f da q 1 
"lql <c s2q2(A(ch) + s2q 2) 

The second term on the r.h.s, is always bounded. The third term, however, 
is dimension dependent: 

,<~, ,<,) 4n[A(c,,)] 1/2 ( s t )  
13 ( C , ) - - I  3 (Cl,)- flc(2n)3S 3 a rc tan . . [d (Ch)] l /2  

I~<~1~. ~ tl<*)/.. ~ K .  In ( $2e2 "~A(ch)~ 
4 l , t ' * '  - -  ~t 4 %t'h' = ~C S" z~(Ch) \ ' -Z~-(-"~h) I 

For d>/5 one uses 

iI<,l/~ ~ -(<~)/~ ~=(Ch--C.)O,.Ia(Ch) d I , l ' * ] - - l d  W ' h l  

This leads, for d =  3, to the following self-consistency equation: 

A(Ch) h 2 A(Ch) ~ r~>.~t~, 
2W.(c . ) -A(Ch)Z+2W.(c . ) ,~-a  tw, s 

4rc[ A( ch) ] u2 ( se ) 
+ flc(2n) 3 s3 arctan [A(Ch)]l/'- 

or A(Ch)~h 4/5 as h--+ 0. For d = 4  the behaviour of A(Ch) is given by the 
equation 

( s2e2 ~ 
h-' = A(ch) 3 In \A---~/,)J 

which is somewhere between h 2/3 <A(ch)<  h 2/3 ln(h). 
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For d~> 5 we have, similarly, A(Ch)~h 2/3. Now for small h, (8) can be 
written as 

,~ , 2h2~T~ 
lim (F A(Q)-)p~,h,N= A(Ch) 

N ~  oo 

From this, it is clear that this remains finite and nontrivial in the limit 
h ~ 0 only if 

I ~ if d = 3  

d =  ~ + 0  if d = 4  | 

(�88 if d~> 5 

Theorem 2. If T~>0,  2=2~  and T ~  T~+ and if ~ and ~' are 
defined by (10) and (11), then co= 1/2, 0( =0 .  The value 1/2 for the scaling 
index ~ agrees with the critical exponent y = 1 predicted for mean field 
systems:t ', 

XQ(T).,~ IT--Tel -~' 

Proof. Again the behavior of A(cr) as T ~  To+ is deduced from the 
behavior of the gap equation, as T--, To+. The argument goes as follows: 
One can easily verify that Ofla(c, T, A) exists and is nonzero for T~> To. 
Therefore, c - c . ~ ( f l - f l c ) ,  and hence A(CT)~(T-T~). Now, for small 
J(c), 

I T - T ~ I  "-~ 
lim ( FN(Q)2)r.h=O.N 

N-- ~ A(c )  

lim (F(P) 2) rj,=o,N ~ I T -  T~ I "-~ [A(c)] 1/2 coth -~-  [A(c)] ,/2 
N ~ o ~  

This yields the results. II 

T h e o r e m  3. If T =  Tc > 0 and 2 = 2,., then e = 1, e' = 0, where e and 
e' are defined by (12) and (13). The value e =  1 implies that the critical 
exponent r/ describing the asymptotic decay of the correlations for the 
order parameter equals 0. This agrees again with the standard result, t '~  

Proof. For T =  T,., A ( c . ) = 0 ,  and hence I2q(C.)~ Isql, where s is a 
constant. For small k, from (12), we have 

Iq[ 2~ 
lim ( ' * Fq.N(Q) F q.N(a))rr 

N ~ et2 

This yields e =  1. For the same reasons as in the previous theorems, 
e'=0. I 
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We may conclude that our new method of studying fluctuation 
behavior has produced interesting results from the physical point of view: 
we retrieve the usual values for the critical exponents of a mean field 
system at the critical points Tc > 0. Our results are also interesting from the 
mathematical point of view. It is important to realize that in fact we 
characterize for each point of the phase diagram a CCR algebra of macro- 
scopic fluctuation observables and a quasi-free state on this algebra. The 
CCR algebra is abelian in the critical situations. 

The non-abelian character of the macroscopic CCR algebra will be 
restored when the critical behavior of the fluctuations of Q and P is studied 
for the ground states. This should be clear from the following expressions 
for the fluctuation variances: 

h 2~,~ 
lim ( (F~Q))-)r=o.am--A(ch) g ~  

~m ((F%(P))2) T=O'h'N=h26'A(Ch) 2 

1T12=2 ct  9 
((FN(Q))->r'h=~ A(c) 

~t" 2 2~' 2m ((FN(P)) )T,h=o.~=lTI A(ch)-~-- 

Iql 2~ A 
(F~.N(Q)* Fq,,v(a)) r=o,h=o,u = Oq(c ) 

,~m 
(Fq, N(P) Fq, N(P))T=O,h=Om = Iql 2.' Qq(C)T 

The non-Abelian CCR-algebra structure will always emerge, since the criti- 
cal exponents for Q and P will always have an opposite sign. Again, this 
observation agrees with the one in ref. 6. The exact value of the critical 
exponent depends of course on the value of 2. 

The scaling indices now no longer yield the same critical exponents. 
However, little is known about calculations of critical exponents in the 
ground state; therefore the results should be interpreted with caution. 

T h e o r e m  4. For T = 0 a n d d ~ > 2 :  

(a) I f 2 > 2  o then ~ = 3 ' = 0 .  

(b) I f0<2~<2~,  then 3 =  - 3 ' = 1 / 4 .  

822/82/1-2-9 



128 

Proof. 
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I f  T =  0, the self-consistency equat ion reads 

h 2 1 t "  ). 

el, = A(ch)2 + (-2n) d J~r 2/2q(Ct,) 

Making  the same analysis as in Theorem 1, leads to our result. 

Theorem 5. If T~ = 0, 2 = 2c, then ct = 1/4, c t '=  - 1/4. 

Proof. The same reasoning as in Theorem 2 is followed, together  
with the fact that  

i : r -  T~I 2- 
lim (FN(Q)* FN(Q))u~ v/-~(c) 

N ~ ,zc~ 

lim (FN(P)* FN(P)) ~ I T -  Tel 2~' x/~(c) 
N ~ ,  

which yields the result. II 

The critical exponent  7 would be 1/2 in this case. 
Finally, we have the following result. 

Theorem 6. If  T =  0, 2 = 2,., then e = 1/2 and e' = - 1/2. 

Proof. The proof  follows the same lines as the proofs of  the previous 
theorems. II 

The critical exponent  q calculated with the result f rom this theorem 
would equal 1. 
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